4.7 Article

Interleukin-6 Modulates the Expression of the Bone Morphogenic Protein Receptor Type II Through a Novel STAT3-microRNA Cluster 17/92 Pathway

Journal

CIRCULATION RESEARCH
Volume 104, Issue 10, Pages 1184-U139

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.109.197491

Keywords

pulmonary hypertension; BMPR2; miR-17/92; interleukin-6; STAT3

Funding

  1. Zurich Lung League Foundation
  2. Theodor and Ida Herzog-Egli-Foundation
  3. University Research Priority Program Integrative Human Physiology at the University of Zurich (ZIHP)

Ask authors/readers for more resources

Dysregulated expression of bone morphogenetic protein receptor type II (BMPR2) is a pathogenetic hallmark of pulmonary hypertension. Downregulation of BMPR2 protein but not mRNA has been observed in multiple animal models mimicking the disease, indicating a posttranscriptional mechanism of regulation. Because microRNAs (miRNAs) regulate gene expression mainly through inhibition of target gene translation, we hypothesized that miRNAs may play a role in the modulation of BMPR2. Performing a computational algorithm on the BMPR2 gene, several miRNAs encoded by the miRNA cluster 17/92 (miR-17/92) were retrieved as potential regulators. Ectopic overexpression of miR-17/92 resulted in a strong reduction of the BMPR2 protein, and a reporter gene system showed that BMPR2 is directly targeted by miR-17-5p and miR-20a. By stimulation experiments, we found that the miR-17/92 cluster is modulated by interleukin (IL)-6, a cytokine involved in the pathogenesis of pulmonary hypertension. Because IL-6 signaling is mainly mediated by STAT3 (signal transducer and activator of transcription 3), the expression of STAT3 was knocked down by small interfering RNA, which abolished the IL-6-mediated expression of miR-17/92. Consistent with these data, we found a highly conserved STAT3-binding site in the promoter region of the miR-17/92 gene (C13orf25). Promoter studies confirmed that IL-6 enhances transcription of C13orf25 through this distinct region. Finally, we showed that persistent activation of STAT3 leads to repressed protein expression of BMPR2. Taken together, we describe here a novel STAT3-miR-17/92-BMPR2 pathway, thus providing a mechanistic explanation for the loss of BMPR2 in the development of pulmonary hypertension. (Circ Res. 2009;104:1184-1191.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available