4.7 Article

Mechanisms Underlying Erythrocyte and Endothelial Nitrite Reduction to Nitric Oxide in Hypoxia Role for Xanthine Oxidoreductase and Endothelial Nitric Oxide Synthase

Journal

CIRCULATION RESEARCH
Volume 103, Issue 9, Pages 957-U114

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.108.175810

Keywords

blood vessels; cardiovascular research; hypoxia; nitric oxide

Funding

  1. British Heart Foundation

Ask authors/readers for more resources

Reduction of nitrite (NO(2)(-)) provides a major source of nitric oxide (NO) in the circulation, especially in hypoxemic conditions. Our previous studies suggest that xanthine oxidoreductase (XOR) is an important nitrite reductase in the heart and kidney. Herein, we have demonstrated that conversion of nitrite to NO by blood vessels and RBCs was enhanced in the presence of the XOR substrate xanthine (10 mu mol/L) and attenuated by the XOR inhibitor allopurinol (100 mu mol/L) in acidic and hypoxic conditions only. Whereas endothelial nitric oxide synthase (eNOS) inhibition had no effect on vascular nitrite reductase activity, in RBCs L-NAME, L-NMMA, and L-arginine inhibited nitrite-derived NO production by >50% (P<0.01) at pH 7.4 and 6.8 under hypoxic conditions. Western blot and immunohistochemical analysis of RBC membranes confirmed the presence of eNOS and abundant XOR on whole RBCs. Thus, XOR and eNOS are ideally situated on the membranes of RBCs and blood vessels to generate intravascular vasodilator NO from nitrite during ischemic episodes. In addition to the proposed role of deoxyhemoglobin, our findings suggest that the nitrite reductase activity within the circulation, under hypoxic conditions (at physiological pH), is mediated by eNOS; however, as acidosis develops, a substantial role for XOR becomes evident. (Circ Res. 2008; 103:957-964.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available