4.7 Article

Neurotrophin p75 receptor (p75NTR) promotes endothelial cell apoptosis and inhibits angiogenesis -: Implications for diabetes-induced impaired neovascularization in ischemic limb muscles

Journal

CIRCULATION RESEARCH
Volume 103, Issue 2, Pages E15-E26

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.108.177386

Keywords

neurotrophins; p75(NTR); VEGF-A; reparative neovascularization; limb ischemia

Funding

  1. British Heart Foundation [RJ4430, RJ4769, SM6266] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS039472, R01 NS039472-04] Funding Source: Medline

Ask authors/readers for more resources

Diabetes impairs endothelial function and reparative neovascularization. The p75 receptor of neurotrophins (p75(NTR)), which is scarcely present in healthy endothelial cells (ECs), becomes strongly expressed by capillary ECs after induction of peripheral ischemia in type-1 diabetic mice. Here, we show that gene transfer-induced p75(NTR) expression impairs the survival, proliferation, migration, and adhesion capacities of cultured ECs and endothelial progenitor cells (EPCs) and inhibits angiogenesis in vitro. Moreover, intramuscular p75(NTR) gene delivery impairs neovascularization and blood flow recovery in a mouse model of limb ischemia. These disturbed functions are associated with suppression of signaling mechanisms implicated in EC survival and angiogenesis. In fact, p75(NTR) depresses the VEGF-A/Akt/eNOS/NO pathway and additionally reduces the mRNA levels of ITGB1 [beta (1) integrin], BIRC5 (survivin), PTTG1 (securin) and VEZF1. Diabetic mice, which typically show impaired postischemic muscular neovascularization and blood perfusion recovery, have these defects corrected by intramuscular gene transfer of a dominant negative mutant form of p75(NTR). Collectively, our data newly demonstrate the antiangiogenic action of p75(NTR) and open new avenues for the therapeutic use of p75(NTR) inhibition to combat diabetes-induced microvascular liabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available