4.5 Article

MicroRNA-1 and MicroRNA-133 in Spontaneous Myocardial Differentiation of Mouse Embryonic Stem Cells

Journal

CIRCULATION JOURNAL
Volume 73, Issue 8, Pages 1492-1497

Publisher

JAPANESE CIRCULATION SOC
DOI: 10.1253/circj.CJ-08-1032

Keywords

Embryonic stem cells; MicroRNA; Myocardial differentiation

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan

Ask authors/readers for more resources

Background: MicroRNAs (miRNAs) regulate various biological processes through inhibiting the translation of RNA transcripts. Although miRNA-1 (miR-1) and miRNA-133 (miR-133) are abundantly expressed in the adult heart and involved in cardiac hypertrophy, the roles of these miRNAs in spontaneous myocardial differentiation are unknown. Methods and Results: The levels of miR-1 and miR-133 in mouse embryonic stem (ES) cells were increased during spontaneous differentiation by 2-dimensional culture, but reduced during forced myocardial differentiation by a histone deacetylase inhibitor, trichostatin A. The overexpression of miR-1 or miR-133 by lentiviral infection reduced the expression of a cardiac-specific gene, Nkx2.5, during differentiation of ES cells. In addition, miR-1 also inhibited a-myosin heavy chain expression. The results of luciferase assays revealed that miR-1 recognizes and targets the 3' untranslated region of cyclin-dependent kinase-9 (Cdk9) in ES cells. Overexpression of miR-1 decreased the protein amounts of Cdk9 without affecting the mRNA levels, indicating that miR-1 post-transcriptionally inhibits Cdk9 translation. Conclusions: miR-1 and miR-133 may play significant roles in the myocardial differentiation of mouse ES cells, and Cdk9 may be involved in this process as a target of miR-1. (Circ J 2009; 73: 1492-1497)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available