4.8 Article

Hemodynamic Support by Left Ventricular Assist Devices Reduces Cardiomyocyte DNA Content in the Failing Human Heart

Journal

CIRCULATION
Volume 121, Issue 8, Pages 989-U24

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.108.808071

Keywords

heart-assist devices; heart failure; hypertrophy; pathology; remodeling

Funding

  1. Deutsche Forschungsgemeinschaft [Ba 1730/9-1, BA 1730/10-1, Ba 1730/11-1]

Ask authors/readers for more resources

Background-Whether adult cardiomyocytes have the capacity to regenerate in response to injury and, if so, to what extent are still issues of intense debate. In human heart failure, cardiomyocytes harbor a polyploid genome. A unique opportunity to study the mechanism of polyploidization is provided through the setting of hemodynamic support by left ventricular assist devices. Hence, the cardiomyocyte DNA content, nuclear morphology, and number of nuclei per cell were assessed before and after left ventricular assist device support. Methods and Results-In 23 paired myocardial samples, cardiomyocyte ploidy was investigated by DNA image cytometry, flow cytometry, and in situ hybridization. Nuclear cross-sectional area and perimeters were measured morphometrically, and the binucleated cardiomyocytes were counted. The median of the cardiomyocyte DNA content and the number of polyploid cardiomyocytes both declined significantly from 6.79 c to 4.7 c and 40.2% to 23%, whereas a significant increase in diploid cardiomyocytes from 33.4% to 50.3% and in binucleated cardiomyocytes from 4.5% to 10% after unloading was observed. Conclusions-The decrease in polyploidy and increase in diploidy after left ventricular assist device suggest a numeric increase in diploid cardiomyocytes (eg, through cell cycle progression with completion of mitosis or by increased stem cells). The cardiac regeneration that follows may serve as a morphological correlate of the recovery observed in some patients after unloading. (Circulation. 2010; 121: 989-996.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available