4.8 Article

Physical Exercise Prevents Cellular Senescence in Circulating Leukocytes and in the Vessel Wall

Journal

CIRCULATION
Volume 120, Issue 24, Pages 2438-+

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.109.861005

Keywords

aging; exercise; nitric oxide synthase; prevention; telomeres

Funding

  1. Deutsche Forschungsgemeinschaft [KFO 196]
  2. Universitat des Saarlandes (HOMFOR)
  3. Ministerium fur Wirtschaft und Wissenschaft des Saarlandes
  4. European Stroke Network

Ask authors/readers for more resources

Background-The underlying molecular mechanisms of the vasculoprotective effects of physical exercise are incompletely understood. Telomere erosion is a central component of aging, and telomere-associated proteins regulate cellular senescence and survival. This study examines the effects of exercising on vascular telomere biology and endothelial apoptosis in mice and the effects of long-term endurance training on telomere biology in humans. Methods and Results-C57/B16 mice were randomized to voluntary running or no running wheel conditions for 3 weeks. Exercise upregulated telomerase activity in the thoracic aorta and in circulating mononuclear cells compared with sedentary controls, increased vascular expression of telomere repeat-binding factor 2 and Ku70, and reduced the expression of vascular apoptosis regulators such as cell-cycle-checkpoint kinase 2, p16, and p53. Mice preconditioned by voluntary running exhibited a marked reduction in lipopolysaccharide-induced aortic endothelial apoptosis. Transgenic mouse studies showed that endothelial nitric oxide synthase and telomerase reverse transcriptase synergize to confer endothelial stress resistance after physical activity. To test the significance of these data in humans, telomere biology in circulating leukocytes of young and middle-aged track and field athletes was analyzed. Peripheral blood leukocytes isolated from endurance athletes showed increased telomerase activity, expression of telomere-stabilizing proteins, and downregulation of cell-cycle inhibitors compared with untrained individuals. Long-term endurance training was associated with reduced leukocyte telomere erosion compared with untrained controls. Conclusions-Physical activity regulates telomere-stabilizing proteins in mice and in humans and thereby protects from stress-induced vascular apoptosis. (Circulation. 2009; 120: 2438-2447.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available