4.8 Article

Response Gene to Complement 32, a Novel Hypoxia-Regulated Angiogenic Inhibitor

Journal

CIRCULATION
Volume 120, Issue 7, Pages 617-U141

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.108.841502

Keywords

angiogenesis; apoptosis; endothelium; gene therapy; hypoxia; ischemia

Funding

  1. National Institutes of Health [HLR01082837]
  2. AHA [0265494T]
  3. China Scholarship Council

Ask authors/readers for more resources

Background-Response gene to complement 32 (RGC-32) is induced by activation of complement and regulates cell proliferation. To determine the mechanism of RGC-32 in angiogenesis, we examined the role of RGC-32 in hypoxia-related endothelial cell function. Methods and Results-Hypoxia/ischemia is able to stimulate both angiogenesis and apoptosis. Hypoxia-inducible factor-1/vascular endothelial growth factor is a key transcriptional regulatory pathway for angiogenesis during hypoxia. We demonstrated that the increased RGC-32 expression by hypoxia was via hypoxia-inducible factor-1/vascular endothelial growth factor induction in cultured endothelial cells. However, overexpression of RGC-32 reduced the proliferation and migration and destabilized vascular structure formation in vitro and inhibited angiogenesis in Matrigel assays in vivo. Silencing RGC-32 had an opposing, stimulatory effect. RGC-32 also stimulated apoptosis as shown by the increased apoptotic cells and caspase-3 cleavage. Mechanistic studies revealed that the effect of RGC-32 on the antiangiogenic response was via attenuating fibroblast growth factor 2 expression and further inhibiting expression of cyclin E without affecting vascular endothelial growth factor and fibroblast growth factor 2 signaling in endothelial cells. In the mouse hind-limb ischemia model, RGC-32 inhibited capillary density with a significant attenuation in blood flow. Additionally, treatment with RGC-32 in the xenograft tumor model resulted in reduced growth of blood vessels that is consistent with reduced colon tumor size. Conclusions-We provide the first direct evidence for RGC-32 as a hypoxia-inducible gene and antiangiogenic factor in endothelial cells. These data suggest that RGC-32 plays an important homeostatic role in that it contributes to differentiating the pathways for vascular endothelial growth factor and fibroblast growth factor 2 in angiogenesis and provides a new target for ischemic disorder and tumor therapies. (Circulation. 2009;120:617-627.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available