4.2 Article

Sex chromosome evolution in moths and butterflies

Journal

CHROMOSOME RESEARCH
Volume 20, Issue 1, Pages 83-94

Publisher

SPRINGER
DOI: 10.1007/s10577-011-9262-z

Keywords

BAC-FISH; conserved synteny; holokinetic chromosomes; sex determination; W chromosome; Z chromosome

Funding

  1. Japan Society for the Promotion of Science [23380030]

Ask authors/readers for more resources

Lepidoptera, i.e. moths and butterflies, have a female heterogametic sex chromosome system, with most females having a WZ constitution while males are ZZ. Besides this predominant WZ/ZZ system, Z/ZZ, WZ(1)Z(2)/Z(1)Z(1)Z(2)Z(2) and W(1)W(2)Z/ZZ systems also occur. Sex is determined by an unknown W-linked gene or genes in Bombyx mori, but by dosage-dependent and equally unknown Z-linked genes in all Z/ZZ species. The female heterogametic sex chromosome system has been conserved for at least 180 MY in the phylogenetic branch that combines Lepidoptera and Trichoptera. The W chromosome, which is present in most lepidopteran species, was incorporated in the sex chromosome system much later, about 90-100 MY ago. The Z chromosomes are highly conserved among Lepidoptera, much like the Z in birds or the X in mammals. The W, on the other hand, is evolving rapidly. It is crammed with repetitive elements which appear to have a high turnover rate but poor in or even devoid of protein-coding genes. It has frequently undergone fusion with autosomes or sporadically lost altogether.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available