4.1 Article

Epigenetic marks for chromosome imprinting during spermatogenesis in coccids

Journal

CHROMOSOMA
Volume 118, Issue 4, Pages 501-512

Publisher

SPRINGER
DOI: 10.1007/s00412-009-0214-8

Keywords

-

Funding

  1. University of Tuscia

Ask authors/readers for more resources

The establishment of sex-specific epigenetic marks during gametogenesis is one of the key feature of genomic imprinting. By immunocytological analysis, we thoroughly characterized the chromatin remodeling events that take place during gametogenesis in the mealybug Planococcus citri, in which an entire haploid set of (imprinted) chromosomes undergoes facultative heterochromatinization in male embryos. Building on our previous work, we have investigated the interplay of several epigenetic marks in the regulation of this genome-wide phenomenon. We characterized the germline patterns of histone modifications, Me(3)K9H3, Me(2)K9H3, and Me(3)K20H4, and of heterochromatic proteins, PCHET2 (HP1-like) and HP2-like during male and female gametogenesis. We found that at all stages in oogenesis chromatin is devoid of any detectable epigenetic marks. On the other hand, spermatogenesis is accompanied by a complex pattern of redistribution of epigenetic marks from euchromatin to heterochromatin, and vice versa. At the end of spermatogenesis, sperm heads are decorated by all the molecules we tested, except for PCHET2. However, only Me(3)K9H3 and Me(2)K9H3 are still detectable in the male pronucleus. We suggest that the histone H3 lysine 9 methylation is the signal used to establish the male-specific imprinting on the paternal genome, thus allowing it to be distinguished from the maternal genome in the developing embryo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available