4.2 Article

Inside-Needle Extraction Method Based on Molecularly Imprinted Polymer for Solid-Phase Dynamic Extraction and Preconcentration of Triazine Herbicides Followed by GC-FID Determination

Journal

CHROMATOGRAPHIA
Volume 75, Issue 3-4, Pages 139-148

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10337-011-2173-5

Keywords

Stainless steel extraction needle; Molecularly imprinted polymer; Solid-phase dynamic extraction; Gas chromatography; Atrazine

Funding

  1. Research Office at the University of Tabriz

Ask authors/readers for more resources

An inside-needle extraction method was developed through thermal polymerization of atrazine-molecularly imprinted polymer (MIP) on the internal surface of a stainless steel hollow needle, which was oxidized and silylated. The fabricated coating (MIP layer) for the needle was durable and showed very good chemical and thermal stability. It could be mounted on a glass syringe and be directly coupled with gas chromatographic (GC) systems. The parameters being effective on the coating and extraction processes, namely nature of oxidizing agent, silylation time, nature and amount of porogen, template-to-MIP components ratio, polymerization time and temperature, sample volume, flow rate, pH and ionic strength of the sample were investigated and optimized. The extraction needle showed high selectivity as well as a great extraction capacity for triazines. The extraction of atrazine, simazine, cyanazine, ametryn, prometryn and terbutryn using the fabricated extraction needle and followed by GC analysis resulted in detection limits of 2.6, 21, 24, 32, 38 and 42 ng mL(-1), respectively. The fabricated needle proved to be applicable to the analysis of real samples by comparing the results obtained for non-spiked and spiked samples of grape juice, tap water and groundwater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available