4.6 Article

Minimal Sequence Requirements for Oligodeoxyribonucleotides Activating Human TLR9

Journal

JOURNAL OF IMMUNOLOGY
Volume 194, Issue 8, Pages 3901-3908

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1402755

Keywords

-

Categories

Funding

  1. Slovenian Research Agency
  2. EN-FIST Centre of Excellence
  3. European Union Structural Funds

Ask authors/readers for more resources

Synthetic oligodeoxyribonucleotides (ODNs) containing CpG (unmethylated deoxycytidylyl-deoxyguanosine dinucleotide) motifs activate endosomal TLR9. The nucleotide sequence, length, and dimerization properties of ODNs modulate their activation of TLR9. We performed a systematic investigation of the sequence motifs of B-class and C-class phosphodiester ODNs to identify the sequence properties that govern TLR9 activation. ODNs shorter than 21 nt and with the adenosine adjacent to the cytidine-guanosine (CG) dinucleotide motif led to a significant loss of the propensity to activate TLR9. The distance between the stimulatory CpG motifs within the ODN fine-tunes the activation of B cells. The minimal ODNs that activate human TLR9 comprise 2 CG dinucleotides separated by 6-10 nt, where the first CpG motif is preceded by the 59-thymidine and the elongated poly-thymidine tail at the 39 end of the ODN. The minimal sequence provides insight into the molecular mechanism of TLR9 ligand recognition. On the basis of sequence requirements, we conclude that two binding sites with different affinities for CG are formed in the human TLR9 dimer, with a very stringent binding site interacting with the 59 CpG motif.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available