4.6 Article

Targeting Ornithine Decarboxylase by α-Difluoromethylornithine Inhibits Tumor Growth by Impairing Myeloid-Derived Suppressor Cells

Journal

JOURNAL OF IMMUNOLOGY
Volume 196, Issue 2, Pages 915-923

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1500729

Keywords

-

Categories

Funding

  1. NCI NIH HHS [R01 CA149669, P50 CA090386, P50 CA180995, P30 CA060553] Funding Source: Medline

Ask authors/readers for more resources

alpha-Difluoromethylornithine (DFMO) is currently used in chemopreventive regimens primarily for its conventional direct anticarcinogenesic activity. However, little is known about the effect of ornithine decarboxylase (ODC) inhibition by DFMO on antitumor immune responses. We showed in this study that pharmacologic blockade of ODC by DFMO inhibited tumor growth in intact immunocompetent mice, but abrogated in the immunodeficient Rag1(-/-) mice, suggesting that antitumor effect of DFMO is dependent on the induction of adaptive antitumor T cell immune responses. Depletion of CD8(+) T cells impeded the tumor-inhibiting advantage of DFMO. Moreover, DFMO treatment enhanced antitumor CD8(+) T cell infiltration and IFN-gamma production and augmented the efficacy of adoptive T cell therapy. Importantly, DFMO impaired Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs) suppressive activity through at least two mechanisms, including reducing arginase expression and activity and inhibiting the CD39/CD73-mediated pathway. MDSCs were one primary cellular target of DFMO as indicated by both adoptive transfer and MDSC-depletion analyses. Our findings establish a new role of ODC inhibition by DFMO as a viable and effective immunological adjunct in effective cancer treatment, thereby adding to the growing list of chemoimmunotherapeutic applications of these agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available