4.8 Article

Enhanced Visible-Light Photocatalytic H2 Production by ZnxCd1-xS Modified with Earth-Abundant Nickel-Based Cocatalysts

Journal

CHEMSUSCHEM
Volume 7, Issue 12, Pages 3426-3434

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201402574

Keywords

heterogeneous catalysis; hydrogen; nickel; photochemistry; water splitting

Funding

  1. Australian Research Council (ARC) [DP1095861, DP130104459]

Ask authors/readers for more resources

The application of various earth-abundant Ni species, such as NiS, Ni, Ni(OH)(2), and NiO, as a co-catalyst in a ZnxCd1-xS system for visible-light photocatalytic H-2 production was investigated for the first time. The loading of Ni or NiS enhanced the photocatalytic activity of ZnxCd1-xS because they could promote the electron transfer at the interface with ZnxCd1-xS and catalyze the H-2 evolution. Surprisingly, Ni(OH)(2)-loaded ZnxCd1-xS exhibits a very high photocatalytic H-2-production rate of 7160 mu mol h(-1) g(-1) with a quantum efficiency of 29.5% at 420 nm, which represents one of the most efficient metal sulfide photocatalysts without a Pt co-catalyst to date. This outstanding activity arises from the pronounced synergetic effect between Ni(OH)(2) and metallic Ni formed in situ during the photocatalytic reaction. However, the loading of NiO deactivated the activity of ZnxCd1-xS because of their unmatched conduction band positions. This paper reports the optimization of the ZnxCd1-xS system by selecting an appropriate Ni-based co-catalyst, Ni(OH)(2), from a series of Ni species to achieve the highest photocatalytic H-2-production activity for the first time and also reveals the roles of these Ni species in the photocatalytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available