4.8 Article

The Effect of Lattice Strain on the Catalytic Properties of Pd Nanocrystals

Journal

CHEMSUSCHEM
Volume 6, Issue 10, Pages 1993-2000

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201300447

Keywords

electrochemistry; heterogeneous catalysis; nanoparticles; oxidation; palladium

Funding

  1. Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

The effect of lattice strain on the catalytic properties of Pd nanoparticles is systematically studied. Synthetic strategies for the preparation of a series of shape-controlled Pd nanocrystals with lattice strain generated from different sources has been developed. All of these nanocrystals were created with the same capping agent under similar reaction conditions. First, a series of Pd nanoparticles was synthesized that were enclosed in {111} surfaces: Single-crystalline Pd octahedra, single-crystalline AuPd core-shell octahedra, and twinned Pd icosahedra. Next, various {100}-terminated particles were synthesized: Single-crystalline Pd cubes and single-crystalline AuPd core-shell cubes. Different extents of lattice strain were evident by comparing the X-ray diffraction patterns of these particles. During electrocatalysis, decreased potentials for CO stripping and increased current densities for formic-acid oxidation were observed for the strained nanoparticles. In the gas-phase hydrogenation of ethylene, the activities of the strained nanoparticles were lower than those of the single-crystalline Pd nanoparticles, perhaps owing to a larger amount of cetyl trimethylammonium bromide on the surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available