4.5 Review

Electrochemical Oxidation of Carbon-Containing Fuels and Their Dynamics in Low-Temperature Fuel Cells

Journal

CHEMPHYSCHEM
Volume 12, Issue 14, Pages 2518-2544

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201100095

Keywords

dynamic operations; electro-oxidation; fuel cells; kinetics; reaction mechanisms

Ask authors/readers for more resources

Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon-containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers. The electro-oxidation of carbon-containing fuels without prior reforming is a more challenging and complex process than anodic hydrogen oxidation. The current understanding of the direct electro-oxidation of carbon-containing fuels in low-temperature fuel cells is reviewed. Furthermore, this review covers various aspects of electro-oxidation for carbon-containing fuels in non-steady-state reaction conditions. Such dynamic investigations open possibilities to elucidate detailed reaction kinetics, to sense fuel concentration, or to diagnose the fuel-cell state during operation. Motivated by the challenge to decrease the consumption of fossil fuel, the production routes of the fuels from renewable resources also are reviewed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available