4.5 Review

Physical properties of biopolymers assessed by optical tweezers:: Analysis of folding and refolding of bacterial pili

Journal

CHEMPHYSCHEM
Volume 9, Issue 2, Pages 221-235

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.200700389

Keywords

bacterial adhesion; force spectroscopy; mechanical properties; optical tweezers; single-molecule studies

Ask authors/readers for more resources

Bacterial adhesion to surfaces mediated by specific adhesion organelles that promote infections, as exemplified by the pill of uropathogenic E. coli, is studied mostly at the level of cell-cell interactions and thereby reflects the averaged behavior of multiple pill. The role of pilus rod structure has therefore only been estimated from the outcome of experiments involving large numbers of organelles at the some time. It has, however, lately become clear that the biomechanical behavior of the pilus shafts play an important, albeit hitherto rather unrecognized, role in the adhesion process. For example, it has been observed that shafts from two different strains, even though they are similar in structure, result in large differences in the ability of the bacteria to adhere to their host tissue. However, in order to identify all properties of pilus structures that ore of importance in the adhesion process, the biomechanical properties of pili must be assessed at the single-molecule level. Due to the low range of forces of these structures, until recently it was not possible to obtain such information. However, with the development of force-measuring optical tweezers (FMOT) with force resolution in the low piconewton range, it has lately become possible to assess forces mediated by individual pili on single living bacteria in real time. FMOT allows for a more or less detailed mapping of the biomechanical properties of individual pilus shafts, in particular those that are associated with their elongation and contraction under stress. This Minireview presents the FMOT technique, the biological model system, and results from assessment of the biomechanical properties of bacterial pili. The information retrieved is also compared with that obtained by atomic force microscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available