4.7 Article

In vivo endocrine effects of naphthenic acids in fish

Journal

CHEMOSPHERE
Volume 93, Issue 10, Pages 2356-2364

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2013.08.033

Keywords

Produced water; Oil pollutants; Stickleback; Endocrine disruption; Vitellogenin; Spiggin

Funding

  1. Department for Environment, Food and Rural Affairs
  2. Norwegian Research Council

Ask authors/readers for more resources

Oil pollution from various sources, including exploration, production and transportation, is a growing global concern. The-highest toxicity of hydrocarbon pollutants is associated with the water-soluble phase compounds, including naphthenic acids, a known component found in all hydrocarbon deposits. Recently, naphthenic acids (NAs) have shown estrogenic and anti-androgenic effects in vitro. For this reason we investigated the potential effects of two commercial mixtures of naphthenic acids on fish in vivo, using the three-spined stickleback (Gasterosteus aculeatus) as a model species. Anti-androgenic and estrogenic properties of tested compounds were evaluated using the androgenized female stickleback screen (AFSS) and a variant of the 21-d fish screen (TG230) respectively. One-dimensional gas chromatography-mass spectrometry (GC-MS) showed that the complex commercial NAs mixtures were dominated by acyclic carboxylic acids. In one experiment (freshwater) we found a clear effect of NA exposure on spiggin levels; this was contrary to our hypothesis since NAs enhanced the androgenic potency of DHT (when co-administered) without inducing spiggin when tested in the absence of DHT. Exposure to NAs did not have a statistically significant effect on vitellogenin (Vtg) production in male stickleback, although the Vtg responses were increasing with increasing exposure concentrations. This study shows that in contrast to previous in vitro data, NAs did not exhibit either estrogenic or anti-androgenic properties in vivo, at the concentrations tested. On the contrary, at least in freshwater, NAs appear to have an overall androgenic effect that is not mediated via the androgen receptor involved in spiggin synthesis. Possible reasons for this discrepancy between in vitro and in vivo results as well as between our studies are discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available