4.7 Article

Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity

Journal

CHEMOSPHERE
Volume 87, Issue 4, Pages 423-434

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2011.12.046

Keywords

Silica nanoparticles; Silver-doped silica nanoparticles; Nanoparticle toxicity; Endoplasmatic reticulum stress; Cytotoxicity; CYP1A

Funding

  1. FHNW
  2. Swiss Federal Agency of Human Health [09.005732]

Ask authors/readers for more resources

Engineered silica nanoparticles (SiO2-NPs) find widespread application and may lead to exposure of humans and the environment. Here we compare the effects of SiO2-NPs and SiO2-NPs doped with silver (SiO2-Ag-NPs) on survival and cellular function of human liver cells (Huh7) and Pimephales promelas (fat-head minnow) fibroblast cells (FMH). In Huh7 cells we investigate effects on the endoplasmatic reticulum (ER), including ER stress, and interactions of nanoparticles (NPs) with metabolizing enzymes and efflux transporters. The NPs formed agglomerates/aggregates in cell culture media as revealed by SEM and TEM. SiO2 and SiO2-1% Ag-NPs were taken up into cells as demonstrated by agglomerates occurring in vesicular-like structures or freely dispersed in the cytosol. Cytotoxicity was more pronounced in Huh7 than in FMH cells, and increased with silver content in silver-doped NPs. Dissolved silver was the most significant factor for cytotoxicity. At toxic and non-cytotoxic concentrations SiO2-NPs and SiO2-1% AgNPs induced perturbations in the function of ER. In Huh7 cells NPs induced the unfolded protein response (UPR), or ER stress response, as demonstrated in induced expression of BiP and splicing of XBP1 mRNA, two selective markers of ER stress. Additionally, SiO2-1% Ag-NPs and AgNO3 induced reactive oxygen species. Pre-treatment of Huh7 cells with SiO2-1% Ag-NPs followed by exposure to the inducer benzo(a)pyrene caused a significant reduced induction of CYP1A activity. NPs did not alter the activity of ABC transporters. These data demonstrate for the first time that SiO2-NPs and SiO2-1% Ag-NPs result in perturbations of the ER leading to the ER stress response. This represents a novel and significant cellular signalling pathway contributing to the cytotoxicity of NPs. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available