4.7 Article

Development of solid phase adsorption toxin tracking (SPATT) for monitoring anatoxin-a and homoanatoxin-a in river water

Journal

CHEMOSPHERE
Volume 82, Issue 6, Pages 888-894

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2010.10.055

Keywords

Anatoxin-a; Cyanobacteria; Homoanatoxin-a; Solid phase adsorption; Liquid chromatography-mass spectrometry

Funding

  1. New Zealand Foundation for Research, Science and Technology [HBRC56, ESR218]
  2. [CAWX0501]

Ask authors/readers for more resources

Sampling and monitoring for cyanotoxins can be problematic as concentrations change with environmental and hydrological conditions. Current sampling practices (e.g. grab samples) provide data on cyanotoxins present only at one point in time and may miss areas or times of highest risk. Recent research has identified the widespread distribution of anatoxin-producing benthic cyanobacteria in rivers highlighting the need for development of effective sampling techniques. In this study we evaluated the potential of an in situ method known as solid phase adsorption toxin tracking (SPAT) for collecting and concentrating anatoxin-a (ATX) and homoanatoxin-a (HTX) in river water. Fifteen different adsorption substrates were screened for efficiency of ATX uptake, nine of which retained high proportions (>70%) of ATX. Four substrates were then selected for a 24-h trial in a SPATT bag format in the laboratory. The greatest decrease in ATX in the water was observed with powdered activated carbon (PAC) and Strata-X (a polymeric resin) SPATT bags. A 3-d field study in a river containing toxic benthic cyanobacterial mats was undertaken using PAC and Strata-X SPATT bags. ATX and HTX were detected in all SPATT bags. Surface grab samples were taken throughout the field study and ATX and HTX were only detected in one of the water samples, highlighting the limitations of this currently used method. Both Strata-X and PAC were found to be effective absorbent substrates. PAC has the advantage that it is cheap and readily available and appears to continue to sorb toxins over longer periods than Strata-X. SPATT has the potential to be integrated into current cyanobacterial monitoring programmes and would be a very useful and economical tool for early warning of ATX and HTX contamination in water. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available