4.7 Article

Transcriptome analysis provides insights for understanding the adverse effects of endosulfan in Drosophila melanogaster

Journal

CHEMOSPHERE
Volume 82, Issue 3, Pages 370-376

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2010.10.002

Keywords

Endosulfan; Drosophila melanogaster; Gene expression; Stress response; Organismal effect

Funding

  1. DBT [BT/PR5640/BCE/08/382/2004]
  2. CSIR [NWP-34]
  3. DBT-SRF [JRF/06-07/194]
  4. ICMR-SRF [45/6/2009/BMS/CMB]

Ask authors/readers for more resources

Indiscriminate use of agrochemicals worldwide, particularly, persistent organic pollutants (POPs), is of concern. Endosulfan, a POP, is used by various developing/developed nations and is known to adversely affect the development and the hormonal profiles of humans and animals. However, little is known about the molecular players/pathways underlying the adverse effects of endosulfan. We therefore analyzed the global gene expression changes and subsequent adverse effects of endosulfan using Drosophila. We used Drosophila melanogaster keeping in view of its well annotated genome and the wealth of genetic/molecular reagents available for this model organism. We exposed third instar larvae of D. melanogaster to endosulfan (2.0 mu g mL(-1)) for 24 h and using microarray, we identified differential expression of 256 genes in exposed organisms compared to controls. These genes are associated with cellular processes such as development, stress and immune response and metabolism. Microarray results were validated through quantitative PCR and biochemical assay on a subset of genes/proteins. Taking cues from microarray data, we analyzed the effect of endosulfan on development, emergence and survival of the organism. In exposed organisms, we observed deformities in hind-legs, reminiscent of those observed in higher organisms exposed to endosulfan. In addition, we observed delayed and/or reduced emergence in exposed organisms when compared to their respective controls. Together, our studies not only highlight the adverse effects of endosulfan on the organism but also provide an insight into the possible genetic perturbations underlying these effects, which might have potential implications to higher organisms. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available