4.7 Article

Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost

Journal

CHEMOSPHERE
Volume 81, Issue 5, Pages 577-583

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2010.08.034

Keywords

Amendment properties; Anaerobic digestion; Digestate; Fertilizer properties; CP MAS C-13 NMR; Principal component analysis

Funding

  1. Lombardy Region - National Programs for Biofuel (Probio Biogas Project - Regione Lombardia, Italy)
  2. ARAL - Associazione Regionale Allevatori della Lombardia [0032370]

Ask authors/readers for more resources

Digestate, with biogas represents the final products of anaerobic digestion (AD). The methane-rich biogas is used to produce electricity and heat, whereas the digestate could be valorized in agriculture. Contrarily to well-recognized biomasses such as digested sludge and compost, the properties of the digestate are not well known and its agricultural use remains unexplored. In this work, a first attempt to study the agronomic properties of digestates was performed by comparing the chemical, spectroscopic, and biological characteristics of digestates with those of compost and digested sludge, used as reference organic matrices. A total of 23 organic matrices were studied, which include eight ingestates and relative digestates, three composts, and four digested sludges. The analytical data obtained was analyzed using principal component analysis to better show in detail similarities or differences between the organic matrices studied. The results showed that digestates differed from ingestates and also from compost, although the starting organic mix influenced the digestate final characteristics. With respect to amendment properties, it seems that biological parameters, more than chemical characteristics, were more important in describing these features. In this way, amendment properties could be ranked as follows: compost congruent to digestate > digested sludge >> ingestate. As to fertilizer properties, AD allowed getting a final product (digestate) with very good fertilizing properties because of the high nutrient content (N,P,K) in available form. In this way, the digestate appears to be a very good candidate to replace inorganic fertilizers, also contributing, to the short-term soil organic matter turnover. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available