4.7 Article

Transport of metal oxide nanoparticles in saturated porous media

Journal

CHEMOSPHERE
Volume 81, Issue 3, Pages 387-393

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2010.07.007

Keywords

Nanoparticles; Transport; Metal oxides; Porous media

Funding

  1. Environment and Health Fund

Ask authors/readers for more resources

The behavior of foul types of untreated metal oxide nanoparticles in saturated porous media was studied. The transport of Fe3O4, TiO2, CuO, and ZnO was measured in a series of column experiments Vertical columns were packed with uniform, spherical glass beads The particles were introduced as a pulse suspended in aqueous solutions and breakthrough curves at the outlet were measured using UV vis spectrometry. Different factors affecting the mobility of the nanoparticles such as ionic strength, addition of organic matter (humic acid), flow rate and pH were investigated The experiments showed that mobility varies strongly among the nanoparticles. with TiO2 demonstrating the highest mobility The mobility is also strongly affected by the experimental conditions. Increasing the ionic strength enhances the deposition of the nanoparticles. On the other hand, addition of humic acid increases the nanoparticle mobility significantly Lower flow rates again led to reduced mobility, while changes in pH had little effect Overall, in natural systems, it is expected that the presence of humic acid in soil and aquifer materials, and the ionic strength of the resident water, will be key factors determining nanoparticle mobility. (C) 2010 Elsevier Ltd All rights reserved

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available