4.7 Article

Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction

Journal

CHEMOSPHERE
Volume 79, Issue 10, Pages 975-986

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2010.03.030

Keywords

Bisphenol A; Fenton reagent; Oxidative coupling reactions; Reactive radicals

Ask authors/readers for more resources

The elimination of Bisphenol A (BPA) from contaminated waters is an urgent challenge. This contribution focuses on BPA degradation by homogeneous Fenton reagent based on reactive center dot OH radicals. Pronounced sub-stoichiometric amounts of H(2)O(2) oxidant were used to simulate economically viable processes and operation under not fully controlled conditions, as for example in in situ groundwater remediation. Aside from the most abundant benzenediols and the monohydroxylated BPA intermediate (which were detected as stable intermediates in earlier contributions), a wide array of aromatic products in the molecular weight range between 94 Da (phenol) and similar to 500 Da could be detected, the overwhelming majority of which have not been reported thus far. The identification was carried out by GC/MS analysis of trimethylsilyl ethers. The structural assignments were confirmed through the use of fully deuterated [(2)H(16)] BPA as the substrate, as well as using retention indices calculated on the basis of the increment system. The occurrence of aromatic intermediates larger than BPA, which typically share either a biphenyl- or a diphenylether structure, can be explained by oxidative coupling reactions of stabilized free radicals or by the addition of organoradicals (organocations) onto BPA molecules or benzenediols. The hydroxycyclohexadienyl radical of BPA was recognized to play central role in :he degradation pathways. Ring opening products, including lactic, acetic and dicarboxylic acids, could be detected in addition to aromatic intermediates. Since some of those intermediates and products are recalcitrant to further oxidation under the conditions of sub-stoichiometric Fenton reaction, they should be carefully considered when designing and optimizing Fenton-driven remediation systems. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available