4.7 Article

A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India)

Journal

CHEMOSPHERE
Volume 73, Issue 7, Pages 1129-1137

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2008.07.019

Keywords

River Ganges; ERA; Sediments; POPs; SQGs

Ask authors/readers for more resources

The aim of this paper was to obtain the first screening ecotoxicological risk evaluation in the Sunderban wetlands, the largest prograding delta in the estuarine phase of the River Ganges. The characterization of exposure was conducted by means of an extensive survey of several persistent organic pollutants (PAHs, PCBs, DDTs, PBDEs, HCHs, HCB) measured in seven core sediments from the Sunderban wetlands, obtaining a dataset with more than 2200 analyses. The pollutant effects were assessed by the use of three different sediment quality guidelines (SQGs) previously developed in the literature to evaluate toxicity induced in sediment-dwelling organisms. The three different approaches chosen for risk assessment of the Sunderban were the consensus SQGs obtained by TEC (threshold effect concentration), PEC (probable effect concentration) and EEC (extreme effect concentration), the threshold/probable effect level (TEL/PEL) approach and. finally, the ERL-ERM guidelines, including the m-ERM-Q(mean ERM quotient). The evaluation of the toxicity induced by a mixture of the target pollutants indicated the importance of gamma-HCH contamination in the Sunderban sediments despite the very low concentrations measured in core sediments. A different sensitivity for toxicity assessment due to quality guidelines was obtained, as the consensus SQGs based on TEC were less conservative and protective than the TEL and ERL approaches, while the use of m-ERM-Q seems to be the most powerful tool to predict the toxicity related to a contaminant mixture. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available