4.7 Article

Efficient removal and mechanisms of water soluble aromatic contaminants by a reduced-charge bentonite modified with benzyltrimethylammonium cation

Journal

CHEMOSPHERE
Volume 70, Issue 11, Pages 1987-1994

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2007.09.042

Keywords

organobentonite; phenyls interaction; siloxane surface; aniline; phenol; toluene

Ask authors/readers for more resources

A novel strategy utilizing the phenyls interaction and the hydrophobic affinity of available siloxane surface in the interlayer of bentonite was proposed to improve the sorption capabilities of organobentonites for water soluble aromatic contaminants. A unique organobentonite (65BTMA) was synthesized by intercalating benzyltrimethylammonium cation (BTMA(+)) into the interlayer of a reduced-charge bentonite with cation exchange capacity (CEC) of 65 cmol kg(-1). Phenol, aniline and toluene were used as model compounds of water soluble aromatic contaminants. Their respective removal efficiencies by 65BTMA were achieved at 83.3%, 89.2% and 97.3% at the initial concentration of 20 mg l(-1). To reveal the sorption mechanism, sorption characteristics of aromatic contaminants to 65BTMA were compared with that of aliphatic contaminants in similar molecular size. And various organobentonites were prepared by combining TMA(+) (tetramethylammonium), BTMA(+), HTMA(+) (heptyltrimethylammonium) and CTMA+ (cetyltrimethylammonium) with two bentonites (CEC = 108 and 65 cmol kg(-1)). To 65BTMA, sorption magnitudes of aromatic contaminants were much greater than that of aliphatic compounds with similar size; and dramatically higher than those to other organobentonites at low pollutant concentrations. These observations revealed that the strong phenyls interactions contributed significantly to sorb the aqueous soluble aromatic contaminants to 65BTMA (>90%), and which favored to design uniquely powerful sorbents. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available