4.7 Article

Assessing PAH and PCB emissions from the relocation of harbour sediments using equilibrium passive samplers

Journal

CHEMOSPHERE
Volume 72, Issue 10, Pages 1581-1587

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2008.04.041

Keywords

equilibrium passive samplers; sediment; field study; PAH isomer ratios

Funding

  1. The Research Council of Norway (NFR)

Ask authors/readers for more resources

Large-scale dredging of contaminated sediments is taking place in the harbor of Oslo, Norway. The dredged sediment masses are transferred into a confined aquatic disposal facility (CAD) in a natural 70-m deep basin within the Oslofjord. Currently there is no established method to determine how much dissolved contaminants are released during relocation and deposition of these sediments. For this reason we tested the use of equilibrium passive samplers consisting of 55 mu m thin polyoxymethylene (POM-55) for studying the release of freely dissolved and thus bioavailable PAHs and PCBs at the disposal site, and found this to be a suitable method. In order to use POM-55 for monitoring PCBs, it was necessary to measure their POM-55/water partition coefficients, which was also presented as part of this study. Elevated turbidity (average 4.1 mg l(-1)) was observed at one side of the basin where no natural sill exists. Analysis of POM-55 at this location before and after deposition revealed that there was an increase in freely dissolved concentrations (C-W,C-free) during deposition by a factor 37.5 for PAHs and a factor of 2.9 for PCBs. In addition, during deposition phenanthrene-to-anthracene aqueous concentration ratios at this location (values of 3-4) were more similar to those of the deposited sediments (similar to 2) than to those of the CAD water prior to deposition (similar to 14). This was not observed for the other locations where a natural sill exists at approximately 30 m water depth. The POM-55 equilibrium passive samplers are here shown to be useful tools for measuring and understanding the dynamics involved in the release of dissolved contaminants during sediment relocation. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available