4.6 Article

Oligomeric alkoxysilanes with cagelike hybrids as cores: Designed precursors of nanohybrid materials

Journal

CHEMISTRY-AN ASIAN JOURNAL
Volume 3, Issue 3, Pages 600-606

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asia.200700242

Keywords

mesoporous materials; organic-inorganic hybrid composites; self-assembly; siloxanes; sol-gel processes

Ask authors/readers for more resources

Well-defined alkoxysilane oligomers containing a cagelike carbosiloxane core were synthesized and used as novel building blocks for the formation of siloxane-based hybrid networks. These oligomers were synthesized from the cagelike trimer derived from bis(triethoxysilyl)methane by silylation with mono-, di-, and triethoxy-chlorosilanes ((EtO)(n)Me3-n,SiCl, n=1, 2, and 3). Hybrid xerogels were prepared by hydrolysis and polycondensation of these oligomers under acidic conditions. The structures of the products varied depending on the number of alkoxy groups (n). When n=2 and 3, microporous xerogels (BET surface areas of 820 and 510 m(2) g(-1), respectively) were obtained, whereas a nonporous xerogel was obtained when n=1. Si-29 NMR spectroscopic analysis suggested that partial rearrangement of the siloxane networks, which accompanied the cleavage of the Si-O-Si linkages, occurred during the polycondensation processes. By using an amphiphilic triblock copolymer surfactant as a structure-directing agent, hybrid thin films with a 2D hexagonal mesostructure were obtained when n = 2 and 3. These results provide important insight into the rational synthesis of molecularly designed hybrid materials by sol-gel chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available