4.6 Article

Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 20, Issue 47, Pages 15409-15418

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201404515

Keywords

density functional calculations; homogeneous catalysis; ligand control; rhodium; transition state theory

Funding

  1. European Research Council under the European Community [257891]
  2. Swiss National Science Foundation [137666, 137529]

Ask authors/readers for more resources

Rh-III-catalyzed directed C-H functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3-aryl dihydroisoquinolones and previously inaccessible 4-aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available