4.6 Article

Understanding the Mechanisms of Unusually Fast H-H, C-H, and C-C Bond Reductive Eliminations from Gold(III) Complexes

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 20, Issue 45, Pages 14650-14658

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201403867

Keywords

computational chemistry; gold catalysis; kinetic isotope effect; reductive elimination; tunneling

Funding

  1. DST
  2. INSA
  3. CSIR

Ask authors/readers for more resources

Carbon-carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co-workers have demonstrated extremely rapid CC reductive elimination from cis-[AuPPh3(4-F-C6H4)(2)Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy-atom tunneling (>25%) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis-[Au(PPh3)(2)(4-F-C6H4)(2)](+) was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for HH, CH, and CC bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp(3) carbon atoms. Metal-carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis-[AuPPh3(H)CH3](+) predict that at -52 degrees C, about 82% of the reaction occurs by hydrogen-atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available