4.6 Article

Molecularly Imprinted Photonic Polymers as Sensing Elements for the Creation of Cross-Reactive Sensor Arrays

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 20, Issue 50, Pages 16620-16625

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201404101

Keywords

colloids; imprinting; molecular recognition; sensors; template synthesis

Funding

  1. National Science Foundation of China [21025311, 21121004, 21261130581, 91027016]
  2. Ministry of Education [2011Z01014]
  3. MOST Program [2011CB808403, 2013CB-834502]
  4. [TRR61]

Ask authors/readers for more resources

By combining molecular imprinting and colloidal crystal templating, molecularly imprinted inverse-opal photonic polymers (MIPPs) acting as sensing elements have been exploited to create sensor arrays for the first time. With this new strategy, abundant sensing elements with differential sensing abilities were easily accessible. Because of the unique hierarchical porous structure integrated in each sensing element, high sensitivity and selectivity, fast response and self-reporting (label-free) detection could be simultaneously achieved. All these fascinating features indicate that MIPPs are ideal sensing elements for creating sensor arrays. By integrating the individual sensing elements on a substrate, the formed array chip delivers better portability and high-throughput capability. As a demonstration, six kinds of contaminants were selected as analytes. The detection and discrimination of these analytes and even their mixtures in a wide range of concentrations, particularly trace amounts of analyte against a high background of other components, could be achieved, indicating the powerful capability of MIPPs-based sensor array for sensing. These results suggest that the described strategy opens a new route for sensor array creation and should find important applications in a wide range of areas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available