4.6 Article

Electrochemical-Reduction-Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithium-Storage Performance

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 19, Issue 33, Pages 10895-10902

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201300319

Keywords

electrochemical reduction; graphene; lithium storage; nanocomposites; polyoxometalates

Funding

  1. National Basic Research Program [2013CB834503]
  2. National Natural Science Foundation of China [51102112, 91227110, 21221063]
  3. Jilin Provincial Science & Technology Department [201201013]

Ask authors/readers for more resources

Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin-type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen-containing groups is decreased to around 5%. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder-type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275mAhg(-1) as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. (12) clusters, which facilitate the electron transfer and lithium-ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available