4.6 Review

Optimized Synthesis, Structural Investigations, Ligand Tuning and Synthetic Evaluation of Silyloxy-Based Alkyne Metathesis Catalysts

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 18, Issue 33, Pages 10281-10299

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201200621

Keywords

alkynes; metathesis; molybdenum; Schrock alkylidynes; silanol

Funding

  1. MPG
  2. Fonds der Chemischen Industrie
  3. SusChemSys

Ask authors/readers for more resources

Nitride- and alkylidyne complexes of molybdenum endowed with triarylsilanolate ligands are excellent (pre)catalysts for alkyne-metathesis reactions of all sorts, since they combine high activity with an outstanding tolerance toward polar and/or sensitive functional groups. Structural and reactivity data suggest that this promising application profile results from a favorable match between the characteristics of the high-valent molybdenum center and the electronic and steric features of the chosen Ar3SiO groups. This interplay ensures a well-balanced level of Lewis acidity at the central atom, which is critical for high activity. Moreover, the bulky silanolates, while disfavoring bimolecular decomposition of the operative alkylidyne unit, do not obstruct substrate binding. In addition, Ar3SiO groups have the advantage that they are more stable within the coordination sphere of a high-valent molybdenum center than tert-alkoxides, which commonly served as ancillary ligands in previous generations of alkyne metathesis catalysts. From a practical point of view it is important to note that complexes of the general type [(Ar3SiO)3Mo?X] (X = N, CR; R = aryl, alkyl, Ar = aryl) can be rendered air-stable with the aid of 1,10-phenanthroline, 2,2'-bipyridine or derivatives thereof. Although the resulting adducts are themselves catalytically inert, treatment with Lewis acidic additives such as ZnCl2 or MnCl2 removes the stabilizing N-donor ligand and gently releases the catalytically active template into the solution. This procedure gives excellent results in alkyne metathesis starting from air-stable and hence user-friendly precursor complexes. The thermal and hydrolytic stability of representative molybdenum alkylidyne and -nitride complexes of this series was investigated and the structure of several decomposition products elucidated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available