4.6 Article

Rates of Water Exchange for Two Cobalt(II) Heteropolyoxotungstate Compounds in Aqueous Solution

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 17, Issue 16, Pages 4408-4417

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201003550

Keywords

cobalt; oxidation; polyoxometalates; tungsten; water

Funding

  1. National Science Foundation [EAR 0814242]
  2. US Department of Energy Office of Basic Energy Science [DE-FG03-96ER 14629, DE-FG03-02ER15693]
  3. DOE GAANN
  4. Australian Research Council through the Australian Centre of Excellence for Electromaterials Science
  5. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energ [DE-AC02-05CH11231, DE-SC0001089]

Ask authors/readers for more resources

Polyoxometalate ions are used as ligands in water-oxidation processes related to solar energy production. An important step in these reactions is the association and dissociation of water from the catalytic sites, the rates of which are unknown. Here we report the exchange rates of water ligated to Co-II atoms in two polyoxotungstate sandwich molecules using the O-17-NMR-based Swift-Connick method. The compounds were the [Co-4(H2O)(2)(B-alpha-PW9O34)(2)](10-) and the larger alpha beta beta alpha-[Co-4(H2O)(2)(P2W15O56)(2)](16-) ions, each with two water molecules bound trans to one another in a Co-II sandwich between the tungstate ligands. The clusters, in both solid and solution state, were characterized by a range of methods, including NMR, EPR, FT-IR, UV-Vis, and EXAFS spectroscopy, ESI-MS, single-crystal Xray crystallography, and potentiometry. For [Co-4(H2O)(2)(B-alpha-PW9O34)(2)](10-) at pH 5.4, we estimate: k(298) = 1.5(5) +/- 0.3 x 10(6) s(-1), Delta H-not equal = 39.8 +/- 0.4 kJ mol(-1), Delta S-not equal = + 7.1 +/- 1.2 J mol(-1)K(-1) and Delta V-not equal = 5.6 +/- 1.6 cm(3)mol(-1). For the Wells-Dawson sandwich cluster (alpha beta beta alpha-[Co-4(H2O)(2)(P2W15O56)(2)](16-)) at pH 5.54, we find: k(298) = 1.6(2) +/- 0.3 x 10(6)s(-1), Delta H-not equal = 27.6 +/- 0.4 kJ mol(-1) Delta S-not equal = -33 +/- 1.3 J mol(-1)K(-1) and Delta V-not equal = 2.2 +/- 1.4 cm(3)mol(-1) at pH 5.2. The molecules are clearly stable and monospecific in slightly acidic solutions, but dissociate in strongly acidic solutions. This dissociation is detectable by EPR spectroscopy as S=3/2 Co-II species (such as the [Co(H2O)(6)](2+) monomer ion) and by the significant reduction of the Co-Co vector in the XAS spectra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available