4.6 Article

Synthesis of Fe3O4@Phenol Formaldehyde Resin Core-Shell Nanospheres Loaded with Au Nanoparticles as Magnetic FRET Nanoprobes for Detection of Thiols in Living Cells

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 18, Issue 4, Pages 1154-1160

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201102188

Keywords

analytical methods; biothiols; fluorescent probes; FRET; nanostructures

Funding

  1. National Basic Research Program of China [2010CB934700]
  2. National Natural Science Foundation of China [91022032, 50732006]
  3. International Science & Technology Cooperation Program of China [2010DFA41170]
  4. National Synchrotron Radiation Laboratory at the University of Science and Technology of China

Ask authors/readers for more resources

A magnetic, sensitive, and selective fluorescence resonance energy transfer (FRET) probe for detection of thiols in living cells was designed and prepared. The FRET probe consists of an Fe3O4 core, a green-luminescent phenol formaldehyde resin (PFR) shell, and Au nanoparticles (NPs) as FRET quenching agent on the surface of the PFR shell. The Fe3O4 NPs were used as the core and coated with green-luminescent PFR nanoshells by a simple hydrothermal approach. Au NPs were then loaded onto the surface of the PFR shell by electric charge absorption between Fe3O4@PFR and Au NPs after modifying the Fe3O4@PFR nanocomposites with polymers to alter the charge of the PFR shell. Thus, a FRET probe can be designed on the basis of the quenching effect of Au NPs on the fluorescence of Fe3O4@PFR nanocomposites. This magnetic and sensitive FRET probe was used to detect three kinds of primary biological thiols (glutathione, homocysteine, and cysteine) in cells. Such a multifunctional fluorescent probe shows advantages of strong magnetism for sample separation, sensitive response for sample detection, and low toxicity without injury to cellular components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available