4.6 Article

Probing the Dynamics of CO2 and CH4 within the Porous Zirconium Terephthalate UiO-66(Zr): A Synergic Combination of Neutron Scattering Measurements and Molecular Simulations

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 17, Issue 32, Pages 8882-8889

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201003596

Keywords

diffusion; metal-organic frameworks; molecular dynamics; neutron diffraction

Funding

  1. European Community [FP7/2007-2013, 228862]

Ask authors/readers for more resources

Quasi-elastic neutron scattering (QENS) measurements combined with molecular dynamics (MD) simulations were conducted to deeply understand the concentration dependence of the self-and transport diffusivities of CH4 and CO2, respectively, in the humidity-resistant metal-organic framework UiO-66(Zr). The QENS measurements show that the self-diffusivity profile for CH4 exhibits a maximum, while the transport diffusivity for CO2 increases continuously at the loadings explored in this study. Our MD simulations can reproduce fairly well both the magnitude and the concentration dependence of each measured diffusivity. The flexibility of the framework implemented by deriving a new forcefield for UiO-66(Zr) has a significant impact on the diffusivity of the two species. Methane diffuses faster than CO2 over a broad range of loading, and this is in contrast to zeolites with narrow windows, for which opposite trends were observed. Further analysis of the MD trajectories indicates that the global microscopic diffusion mechanism involves a combination of intracage motions and jump sequences between tetrahedral and octahedral cages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available