4.6 Article

Exciton-Coupled Charge-Transfer Dynamics in a Porphyrin J-Aggregate/TiO2 Complex

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 17, Issue 12, Pages 3458-3464

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201002537

Keywords

aggregation; charge transfer; Frenkel excitons; porphyrins; titania

Funding

  1. BRNS
  2. DST

Ask authors/readers for more resources

Exciton-coupled charge-transfer (CT) dynamics in TiO2 nanoparticles (NP) sensitized with porphyrin J-aggregates has been studied by femtosecond time-resolved transient absorption spectroscopy. J-aggregates of 5,10,15-triphenyl-20-(3,4-dihydroxyphenyl) porphyrin (TPPcat) form CT complexes on TiO2 NP surfaces. Catechol-mediated strong CT coupling between J-aggregate and TiO2 NP facilitates interfacial exciton dissociation for electron injection into the conduction band of the TiO2 nanoparticle in pulse width limited time (< 80 fs). Here, the electron-transfer (< 80 fs) process dominates over the intrinsic exciton-relaxation process (J-aggregates: ca. 200 fs) on account of exciton-coupled CT interaction. The parent hole on J-aggregates is delocalized through J-aggregate excitonic coherence. As a result, holes immobilized on J-aggregates are spatially less accessible to electrons injected into TiO2, and thus the back electron transfer (BET) process is slower than that of the monomer/TiO2 system. The J-aggregate/porphyrin system shows exciton spectral and temporal properties for better charge separation in strongly coupled composite systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available