4.6 Review

Mesoporous Hybrid Materials Containing Nanoscopic Binding Pockets for Colorimetric Anion Signaling in Water by using Displacement Assays

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 15, Issue 36, Pages 9024-9033

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200900890

Keywords

anions; displacement assays; mesoporous materials; sensors; supramolecular chemistry

Funding

  1. Ministerio de Educacion y Ciencia [CTQ2006-15456-C04-01]
  2. Caja de Ahorros del Mediterraneo (CAM)
  3. Spanish Ministerio de Innovacion

Ask authors/readers for more resources

Mesoporous solids functionalized with anion-binding groups have proved to be suitable anion hosts and have been used in selective colorimetric displacement assays. The material UVM-7, a mesoporous MCM41-type support characterized by the presence of nanometric mesoporous particle conglomerates, was selected as inorganic scaffolding. Reaction of the template-free UVM-7 solid with 3-aminopropyltriethoxysilane (1) yielded solid SI, from which the derivatives S2 and S3 were obtained by reaction with 2-methylthio-2-imidazoline hydroiodide (2) and butyl isocyanate (3), respectively. Solids S4 and S5 were prepared by reaction of the starting mesoporous UVM-7 scaffolding with N-methyl-N'-propyltrimethoxysilyl imidazolium chloride (4) and with 3-(trimethoxysilyl)propyl-N,N,N-trimethylammonium chloride (5), respectively. The solids synthesized contain mesoporous binding pockets that can interact with anions through electrostatic attractive forces (S1, S2, S4, S5) and hydrogen-bonding interactions (S1, S2, S3, S4). These functionalized solids were loaded with a dye (d) capable of interacting coordinatively with the anchored binding sites, in our case 5-carboxyfluorescein, to yield the hybrid materials S1d, S2d, S3d, S4d and S5d. These dye-containing solids are the signaling reporters. Their sensing ability towards a family of carboxylates, namely acetate, citrate, lactate, succinate, oxalate, tartrate, malate, mandelate, glutamate and certain nucleotides, has been studied in pure water at pH 7.5 (Hepes., 0.01 mol dm(-3)). In the sensing protocol, a particular analyte may be bonded preferentially by the nanoscopic functionalized pocket, leading to delivery of the dye to the solution and resulting in colorimetric detection of the guest. The response to a given anion depends on the characteristics of the binding pockets and the specific interaction of the anion with the binding groups in the mesopores. We believe that the possibility of using a wide variety of mesoporous supports that can easily be functionalized with anion-binding sites, combined with suitable dyes as indicators, make this approach significant for opening new perspectives in the design of chromogenic assays for anion detection in pure water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available