4.6 Article

A Comparison Study of Rhodamine B Photodegradation over Nitrogen-Doped Lamellar Niobic Acid and Titanic Acid under Visible-Light Irradiation

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 15, Issue 14, Pages 3538-3545

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200801770

Keywords

acidity; doping; photochemistry; solid acids; visible light

Funding

  1. Materials Analysis Station. National Institute for Materials Science (NIMS)
  2. Strategic International Cooperative Program. Japan Science and Technology Agency (JST)
  3. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Ask authors/readers for more resources

A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb3O8 and H2Ti4O9) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb3O8 sample than for the less acidic H2Ti4O9. Compared with the nitrogen-doped KNb3O8 and K2Ti4O9 samples, the nitrogen-doped HNb3O8 and H2Ti4O9 solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb3O8 sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available