4.6 Article

Electroactive Linear-Hyperbranched Block Copolymers Based on Linear Poly(ferrocenylsilane)s and Hyperbranched Poly(carbosilane)s

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 15, Issue 36, Pages 9068-9077

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200900666

Keywords

aggregation; block copolymers; electrochemistry; ferrocenes; hyperbranching

Funding

  1. Fonds der Chemischen Industrie (FCI)

Ask authors/readers for more resources

A convenient two-step protocol is presented for synthesis of linear-hyperbranched diblock copolymers consisting of a linear, organometallic poly(ferrocenylsilane) (PFS) block and hyperbranched poly(carbosilane) (hbPCS) segments. Linear PFS diblock copolymers were synthesized through photolytic ring-opening polymerization of dimethyl[1]silaferrocenophane as the first block and methylvinyl[1]silaferrocenophane as the second. These block copolymers served as polyfunctional cores in a subsequent hydrosilylation polyaddition of different silane-based AB(2) monomers. Three AB(2) monomers (methyldiallylsilane; methyldiundecenylsilane, and ferrocenyldiallylsilane) were investigated; they introduced structural diversity to the hyperbranched block and showed variable reactivity for the hydrosilylation reaction. In the case with the additional ferrocene moiety in the ferrocenyldiallylsilane monomer, an electroactive hyperbranched block was generated. No slow monomer addition was necessary for molecular-weight control of the hyperbranching polyaddition, as the core had much higher functionality and reactivity than the carbosilane monomers. Different block ratios were targeted and hybrid block copolymers with narrow polydispersity (<1.2) were obtained. All the resulting polymers were investigated and characterized by size exclusion chromatography, NMR spectroscopy, cyclic voltammetry, and TEM. and exhibited strongly anisotropic aggregation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available