4.6 Article

On the Size of Ions Solvated in Helium Clusters

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 15, Issue 29, Pages 7101-7108

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200802554

Keywords

atomic clusters; gas-phase reactions; helium; mass spectrometry; solvation

Funding

  1. Austrian Academy of Sciences
  2. Austrian Science Fund (FWF), Wien
  3. European Commission, Brussels
  4. Austrian Science Fund (FWF) [L 633] Funding Source: researchfish

Ask authors/readers for more resources

Helium nanodroplets are doped with SF6, C4F8, CCl4, C6H5Br, CH3I, and I-2. Upon interaction with free electrons a variety of positively and negatively charged cluster ions X+/- He-n are observed where X+/- = F+/-, Cl+/-, Br+/-, I+, I-2(+), or CH3I+. The yield of these ions versus cluster size n drops at characteristic sizes n(s) that range from n(s)=10.2 +/- 0.6 for F+ to n(s) = 22.2 +/- 0.2 for Br-. n(s) values for halide anions are about 70% larger than for the corresponding cations. The steps in the ion yield suggest closure of the first solvation shell. We propose a simple classical model to estimate ionic radii from n(s). Assuming the helium density in the first solvation shell equals the helium bulk density one finds that radii of halide anions in helium are nearly twice as large as in alkali halide crystals, indicating the formation of an anion bubble due to the repulsive forces that derive from the exchange interaction. In spite of the simplicity of our model, anion radii derived from it agree within approximately 10% with values derived from the mobility of halide anions in superfluid bulk helium, and with values computed by quantum Monte Carlo methods for X-Hen cluster anions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available