4.6 Article

Biodegradable Naphthenic Acid Ionic Liquids: Synthesis, Characterization, and Quantitative Structure-Biodegradation Relationship

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 14, Issue 35, Pages 11174-11182

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200800620

Keywords

biodegradability; green chemistry; ionic liquids; molecular descriptors; reaction mechanisms

Funding

  1. National Science Fund for Distinguished Young Scholars of China [20625618]
  2. National Natural Science Foundation of China [20808083, 20873152]
  3. National 863 Program of China [2006AA06Z376]

Ask authors/readers for more resources

It has been confirmed that commonly used ionic liquids are not easily biodegradable. When ultimately disposed of or accidentally released, they would accumulate in the environment, which strongly restricts large-scale industrial applications of ionic liquids. Herein, ten biodegradable ionic liquids were prepared by a single, one-pot neutralization of choline and surrogate naphthenic acids. The structures of these naphthenic acid ionic liquids (NAILs) were characterized and confirmed by H-1 and C-13 NMR spectroscopy, IR spectroscopy, and elemental analysis, and their physical properties, such as densities, viscosities, conductivities, melting points (T-m), glass transition points (T-g), and the onset temperatures of decomposition (T-d), were determined. More importantly, studies showed that these NAILs would be rapidly and completely biodegraded in aquatic environments under aerobic conditions, which would make them attractive candidates to be utilized in industrial processes. To explore the underlying mechanism involved in the NAIL biodegradation reaction and seek prediction of their biodegradability under environmental conditions, four molecular descriptors were chosen: the logarithm of the n-octanol/water partition coefficient (log P), van der Waals volume (V-vdW), energies of the highest occupied molecular orbital (E-HOMO), and energies of the lowest unoccupied molecular orbital (E-LUMO). Through multiple linear regression, a general and qualified model including the biodegradation percentage for NAILs after the 28-day OECD 301D test (%B-28) and molecular descriptors was developed. Regression analysis showed that the model was statistically significant at the 99% confidence interval, thus indicating that the %B-28 Of NAILs could be explained well by the quantum chemical descriptor E-HOMO, which might give some important clues in the discovery of biodegradable ionic liquids of other kinds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available