4.8 Article

Solution Processable Iridescent Self-Assembled Nanoplatelets with Finely Tunable Interlayer Distances Using Charge- and Sterically Stabilizing Oligomeric Polyoxyalkyleneamine Surfactants

Journal

CHEMISTRY OF MATERIALS
Volume 26, Issue 4, Pages 1528-1537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm402991c

Keywords

-

Funding

  1. Kaneka Corp.
  2. Japan Polypropylene Corp.
  3. Grants-in-Aid for Scientific Research [25790082] Funding Source: KAKEN

Ask authors/readers for more resources

Photonic structures that are processable in organic solvents are critical to large-scale fabrication of device components. To provide a viable alternative to traditional lithographic methods, solution processable photonic structures are required to demonstrate fine control over critical device dimensions in the fabrication process. Photonic structures typically require long-range electrostatic forces that are effective only in aqueous solutions. Here we report a novel strategy of using oligomeric polyoxyalkyleneamine surfactants to prepare charge- and sterically stabilized nanoplatelets that can self-assemble into lamellar phases in nonaqueous solutions with finely tunable large interlamellar distances that can exceed 100 nm. Brilliant iridescence in the visible spectrum with tunable colors is demonstrated. The nanoplatelets are shown to circumvent the typical phase transition behavior from isotropic to nematic to columnar phase and transitioned into smectic phase at concentrations of phi < 0.01.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available