4.8 Article

Thermal Variation of Structure and Electrical Conductivity in Bi4YbO7.5

Journal

CHEMISTRY OF MATERIALS
Volume 25, Issue 3, Pages 326-336

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm302898m

Keywords

bismuth oxide; bismuth ytterbium oxide; fluorite structure; defect structure; neutron diffraction; total scattering; X-ray diffraction; ac impedance spectroscopy

Funding

  1. Polish Ministry of Science and Higher Education [2783/B/T02/2009/36]
  2. Science and Technology Facilities Council (STFC)
  3. Vetenskapsradet (the Swedish Research Council)

Ask authors/readers for more resources

The thermal behavior of the oxide ion-conducting solid electrolyte Bi4YbO7.5 was investigated using a combination of variable temperature X-ray and neutron powder diffraction, thermal analysis (DTA and TGA), and ac impedance spectroscopy. The title compound shows a fluorite-type structure throughout the measured temperature range (20-850 degrees C), with a phase separation at ca. 600 degrees C into a cubic delta-type phase and an orthorhombic phase of assumed stoichiometry Bi17Yb7O36. This type of transition is a relatively common feature in bismuth oxide-based systems and can limit their practical application. Here, the transition was carefully studied using isothermal measurements, which showed that it is accompanied by changes in oxide-ion stoichiometry, as well as significant disorder in the oxide ion sublattice in the delta-type phase. These results correlate with the observed electrical behavior. Analysis of the total neutron scattering through reverse Monte Carlo (RMC) modeling reveals details of the coordination environments for both cations. The oxide-ion vacancy distribution seems to be consistent with a favoring of < 100 > vacancy pairs, although < 110 > vacancy pairs exhibit the highest frequency as they have the maximum likelihood. A vacancy ordering model based on three vacancies per cell is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available