4.8 Article

Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices

Journal

CHEMISTRY OF MATERIALS
Volume 24, Issue 20, Pages 3998-4003

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm302899v

Keywords

vapor phase polymerization; PEDOT; high conductivity; organic electronics

Funding

  1. ITEK Pty Ltd
  2. University of South Australia

Ask authors/readers for more resources

The reduced pressure synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) with sheet-like morphology has been achieved with the introduction of an amphiphilic triblock copolymer into the oxidant thin film. Addition of the copolymer not only results in an oxidant thin film which remains liquid-like under reduced pressure but also induces structured growth during film formation. PEDOT films were polymerized using the vacuum vapor phase polymerization (VPP) technique, in which we show that maintaining a liquid-like state for the oxidant is essential. The resulting conductivity is equivalent to commercially available indium tin oxide (ITO) with concomitant optical transmission values. PEDOT films can be produced with a variety of thicknesses across a range of substrate materials from plastics to metals to ceramics, with sheet resistances down to 45 Omega/square (ca. 3400 S.cm(-1)), and transparency in the visible spectrum of >80% at 65 nm thickness. This compares favorably to ITO and its currently touted replacements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available