4.8 Article

Effects of Dendronization on the Linear and Third-Order Nonlinear Optical Properties of Bis(thiopyrylium) Polymethine Dyes in Solution and the Solid State

Journal

CHEMISTRY OF MATERIALS
Volume 24, Issue 9, Pages 1606-1618

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm3002139

Keywords

polymethines; dendrons; aggregation; optical properties; third order nonlinear optical properties

Funding

  1. Science and Technology Center of the National Science Foundation [DMR-0120967]
  2. Air Force Office of Scientific Research through the COMAS MURI [FA9550-10-1-0558]

Ask authors/readers for more resources

Effects of the size and attachment position of benzyl aryl ether dendrons covalently attached to bis(thiopyrylium) penta- and heptamethines on the optical properties of these dyes in solution and in solid films have been investigated. In dilute solution the low-energy absorption bands of some of the dendronized species differ from those of the parent compounds in having much smaller transition dipole moments, this effect possibly due to differences in ion pairing, while at higher concentrations, dye-dye interactions lead to a decrease in the transition dipole moments of the nondendronized species, but not of the dendronized ones. Consequently, in the high concentration range, dendronized and nondendronized species exhibit similar values of the real part of the microscopic third-order polarizability at 1550 nm. Solid-state film absorption spectra suggest that the dendrons significantly disrupt the chromophore-chromophore interactions seen for the nondendronized species, reducing, but not eliminating, linear absorption losses in the near-IR, and suppressing absorption peaks that are hypsochromically shifted from the solution spectra maximum: centrally placed dendrons have a larger effect than terminal dendronization, so that the corresponding thin-film spectra more closely resemble those seen in solution with increasing generations of dendronization. Z-scan measurements at 1550 nm indicate that the third-order susceptibility of dendronized heptamethine guest-host films depend approximately linearly on doping ratio of dyes and are in reasonable agreement with values extrapolated from solution-derived third-order polarizabilities; in contrast, the susceptibilities of films highly doped with an undendronized analogue fall short of values expected from solution polarizabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available