4.8 Article

Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal-Organic Framework MIL-53(Fe)

Journal

CHEMISTRY OF MATERIALS
Volume 24, Issue 14, Pages 2781-2791

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm301242d

Keywords

metal-organic framework; porous; separation; molecular sieve; xylenes

Funding

  1. European Community [228862]
  2. FWO-Vlaanderen
  3. IAP (Belspo) [6/27]
  4. KULeuven

Ask authors/readers for more resources

We report a study of the use of the porous metal organic framework material MIL-53(Fe), Fe-III(OH)(0.8)F-0.2[O2C-C6H4-CO2], for the separation of BTEX mixtures (benzene, toluene, ethylbenzene, and the three xylene isomers). Crystal structures of the three host:guest materials MIL-53(Fe)[xylene], where xylene = the ortho, meta, or para isomer of dimethylbenzene, have been solved and refined from powder X-ray diffraction. Each exhibits a fully expanded form with a variety of host:guest and guest:guest interactions responsible for stabilizing the structure. While the ortho- and meta- isomers present a similar arrangement when occluded in the MIL-53 host, the para-xylene shows a distinctly different set of interactions with the host. Upon thermal treatment, xylenes are partially lost to give crystalline phases MIL-53(Fe)[xylene](0.5), the structures of which have also been solved. The kinetics of uptake of each xylene by MIL-53(Fe)[H2O], in which the water is replaced by the organic guest, have been studied using time-resolved energy-dispersive X-ray diffraction: this shows differences in kinetics of the adsorption of the three isomers. Under chromatographic conditions in heptane at 293 K, anhydrous MIL-53(Fe) is able to separate the three xylene isomers with elution of the para-xylene before the other two isomers, and at 323 K the host is able to resolve all components of the BTEX mixture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available