4.8 Review

Zintl Chemistry for Designing High Efficiency Thermoelectric Materials

Journal

CHEMISTRY OF MATERIALS
Volume 22, Issue 3, Pages 624-634

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm901956r

Keywords

-

Funding

  1. Beckman Foundation
  2. Jet Propulsion Laboratory

Ask authors/readers for more resources

Zintl phases and related compounds are promising thermoelectric materials; for instance, high zT has been found in Yb14MnSb11, clathrates, and the filled skutterudites. The rich solid-state chemistry of Zintl phases enables numerous possibilities for chemical substitutions and structural modifications that allow the fundamental transport parameters (carrier concentration, mobility, effective mass, and lattice thermal conductivity) to be modified for improved thermoelectric performance. For example, free carrier concentration is determined by the valence imbalance using Zintl chemistry, thereby enabling the rational optimization of zT. The low thermal conductivity values obtained in Zintl thermoelectrics arise from a diverse range of sources, including point defect scattering and the low velocity of optical phonon modes. Despite their complex structures and chemistry, the transport properties of many modern thermoelectrics can be understood using traditional models for heavily doped semiconductors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available