4.8 Article

Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles

Journal

CHEMISTRY OF MATERIALS
Volume 22, Issue 10, Pages 3226-3235

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm100478z

Keywords

-

Funding

  1. National Science Foundation [DMR-0704312]
  2. NSF through MRSEC
  3. NSF through ERC
  4. NSF through MRI
  5. NSF through NNIN

Ask authors/readers for more resources

Oxide nanoparticles (NPs) are typically synthesized from the assembly of atoms, ions or other species by bottom-up methods. Here we report an alternative, top-down approach as a general route to synthesize porous and nonporous oxide/phosphate nanocubes. The method is based on the construction of three-dimensionally ordered macroporous (3DOM) structures via colloidal crystal templating, followed by the spontaneous disassembly of these structures into particulate building blocks assisted by the introduction of amphiphilic surfactants. Syntheses and analyses of nanocubes composed of d-block transition metal (Cr, Mn, Fe, Co, Ni, Cu and Zn) oxides and several mixed oxides are presented to exemplify the generality of the method. Because the NP morphology is defined by the rigid colloidal crystal template, particle composition and characteristics can be readily tuned, leaving much freedom for the development of NP functionality. In addition, the shaped particles retained their geometric relation, namely the face-centered cubic arrangement dictated by the colloidal crystal template, but they could self-reassemble into ordered simple cubic arrays, which provides a unique approach for in situ particle organization. In this paper, the self-reassembly process is also discussed in detail.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available