4.8 Article

A Linear Actuation of Polymeric Nanofibrous Bundle for Artificial Muscles

Journal

CHEMISTRY OF MATERIALS
Volume 21, Issue 3, Pages 511-515

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm802377d

Keywords

-

Funding

  1. Creative Research Initiative Center for Bio-Artificial Muscle of the Ministry of Education, cience and Technology (MEST)
  2. Korea Science and Engineering Foundation (KOSEF) in Korea

Ask authors/readers for more resources

Artificial muscle fiber mimicking myofibril is fabricated using electrospun nanofibers of high strength polyurethane followed by controlled in situ chemical polymerization with aniline. The resulting polyurethane(PU)/polyaniline(PANi) hybrid nanofibrous bundle consisting individual nanofibers of about 900 nm diameter responds to an electrical stimuli producing a linear actuation strain as high as 1.65% at an applied stress of 1.03 MPa in 1 M methane sulfonic acid (MSA), the highest strain produced in the nanofibers templated PANi. The hybrid nanofibrous bundle shows an electrical conductivity of about 0.5 S/cm and the electroactivity is imparted by PANi. The biomimetic artificial nanofibrous bundle shows work per cycle (W.C.) efficiency of above 75% for the electrochemical actuation even beyond 100 cycles. The PU/PANi hybrid nanofibrous bundle could be stably actuated without significant creep up to an applied load of 11 mN (2.263 Mpa) beyond which significant creep behavior appears.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available