4.8 Article

Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst

Journal

CHEMISTRY OF MATERIALS
Volume 20, Issue 9, Pages 2937-2941

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cm7031898

Keywords

-

Ask authors/readers for more resources

In this work, we demonstrated the EG-assisted solvothermal synthesis of 3-D microspherical BiOBr architectures assembled by nanosheets. The morphology and compositional characteristics of the 3-D architectures were investigated by various microscopy techniques. The possible formation mechanism for the architectures was discussed. The band gap of the obtained BiOBr materials was estimated to be 2.54 eV by UV-vis. The specific surface area and porosity of the BiOBr 3-D architectures also were investigated by using nitrogen adsorption and desorption isotherms. Because of the narrow bandgap and the novel 3-D i-nicro-/nanostructure, the BiOBr architectures show a more excellent photocatalytic activity under visible light irradiation than the BiOBr bulk plates. Several possible reasons for the higher photocatalytic activity have been taken into consideration. In addition, the photocatalyst is stable during the reaction and can be used repeatedly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available